North Coast Watershed Assessment Program Participants

Contributing Agencies and Departments

Department of Fish and Game
Director, Loris “Ryan” Broddrick

State Water Resources Control Board
Chair, Art Baggett

Department of Forestry and Fire Protection
Director, Dale Gildert

North Coast Regional Water Quality Control Board
Executive Officer, Catherine Kuhlman

Department of Water Resources
Director, Lester A. Snow

Department of Conservation
Interim Director, Debbie Sareeram
Big River Assessment Team

Assessment Manager
Scott Downie
California Department of Fish and Game

Fisheries:
Steve Cannata
California Department of Fish and Game
Beatrijs deWaard
Pacific States Marine Fisheries Commission
Cynthia LeDoux-Bloom
California Department of Fish and Game

Forestry and Land Use:
Rob Rutland
California Department of Forestry and Fire Protection

Water Quality:
Elmer Dudik
North Coast Regional Water Quality Control Board

Geology:
Karin W. Fresnel
Department of Conservation/California Geological Survey

Fluvial Geomorphology:
Dawn McGuire
Department of Conservation/California Geological Survey
Currently Department of Fish and Game

Geographic Information System, Data Management, Ecological Management Decision System (EMDS)

Vikki Avara-Snider – GIS & Document Production
Pacific States Marine Fisheries Commission
Kimberly Pettit - GIS
Pacific States Marine Fisheries Commission
Steve Cannata - EMDS
California Department of Fish and Game
Chris Fischer - EMDS
California Department of Forestry and Fire Protection
Kevin Hunting - GIS
California Department of Fish and Game
Chris Keithley - EMDS
California Department of Forestry and Fire Protection
Richard Walker, Ph.D. - EMDS
California Department of Forestry and Fire Protection

Research:
John Richardson
Pacific States Marine Fisheries Commission

ACKNOWLEDGEMENTS
The Big River Assessment Team wishes to thank the following for their shared valuable data, assistance, and time: California State Parks, Mendocino Redwood Company, Hawthorne Timber Company, the California Geological Survey, Graham Matthews and Associates, Doug Albin, Scott Monday, Scott Harris, and Dave Wright. We are also very grateful to the numerous private landowners who granted team members access to collect data.

Suggested Citation:
NCWAP Basin Assessment Products

Reports
Main products are basin level assessment reports for each subject watershed. These reports consist of an integrative synthesis report and a number of discipline-oriented appendices. A limited number of these synthesis reports and appendices were produced in printed media for program cooperators and partners, constituent groups, and agencies. Printed reports were also distributed to most major libraries. Printed documents are not currently available to the public; however, the entire synthesis report document, including appendices and maps, is available on a compact disk in PDF format or via the website www.coastalwatersheds.ca.gov. Basin assessment reports are currently available for the Gualala, Mattole, Albion, and Big River basins. CDs containing the reports, appendices, and maps may be requested from:

California Department of Fish and Game
Coastal Watershed Planning and Assessment Program
1487 Sandy Prairie Court, Ste. A
Fortuna, CA 95540
707.725.1070

Klamath Resource Information System CDs and Website
The Institute for Fisheries Resources (IFR) has produced Klamath Resource Information System (KRIS) projects for several North Coast watersheds. KRIS is a custom software program capable of managing watershed data sets, tables, charts, photos, and maps. The current KRIS products are available via the IFR website (www.krisweb.com), or on CD from:

Department of Forestry and Fire Protection
Fire and Resource Assessment Program
PO Box 944246
Sacramento, CA 94244-2460
(916) 327-3939
frap@fire.ca.gov

Maps of Landslides and Relative Landslide Potential
To date, the California Geological Survey has produced maps and GIS coverage of landslides and relative landslide potential on the Mattole, Gualala, and Big rivers, and Redwood Creek basins. To order map sets contact one of the California Geological Survey offices:

Publications Sales-Sacramento
(916) 445-6199 fax: (916)324-5644
Southern California Regional Office-Los Angeles
(213) 239-0878

Publications and Information Office-Sacramento
(916) 445-5716
Bay Area Regional Office-San Francisco
(415) 904-7707

You may also download the order form from the web site: www.consrv.ca.gov/cgs/information/publications/ordering.htm

Data sets and GIS Products
A number of data sets and GIS products have been produced as a part of this work. Some of these products are available at www.coastalwatersheds.ca.gov
Table of Contents

Program Introduction and Overview
- Assessment Needs for Salmon Recovery & Watershed Protection ... 1
- Program Assessment Region ... 1
- Program Guiding Questions .. 1
- Program Goals ... 2
- North Coast Salmon, Stream, and Watershed Issues .. 2
- Factors Affecting Anadromous Salmonid Production ... 5
- Disturbance and Recovery of Stream and Watershed Conditions ... 7
 - Natural and Human Disturbances .. 7
 - Defining Recovered .. 7
 - Factors and Rates of Recovery .. 8
 - Continuing Challenges to Recovery ... 8
- Policies, Acts, and Listings .. 9
 - Federal Statutes .. 9
 - State Statutes .. 9

Assessment Strategy and General Methods
- Basin Assessment Approach ... 11
- Guiding Assessment Questions and Responses .. 12
- Report Utility and Usage .. 13
- Program Products ... 13
- Assessment Report Conventions .. 13
 - Subbasins .. 13
 - CalWater 2.2.1 Planning Watersheds ... 14
 - Hydrology Hierarchy ... 16
 - Electronic Data Conventions .. 16
- Methods by Department ... 18
 - Geology and Fluvial Geomorphology ... 18
- Hydrology ... 19
 - Data Collection .. 19
 - Mean Discharge ... 19
 - Flow Duration and Annual Runoff ... 19
 - Peak Discharge ... 19
 - Flood Frequency ... 20
 - Water Rights .. 20
- Vegetation and Land Use .. 20
 - Vegetation .. 20
 - Fire and Fuels .. 20
 - Population .. 21
 - Land Use .. 21
 - CDF Northern Region Forest Practice GIS Timber Harvesting Plan Data ... 22
 - Roads ... 22
 - Stream Buffer Vegetation .. 22
 - Disturbance ... 22
- Water Quality .. 23
 - Water Quality Criteria ... 23
 - Data Analysis Methods ... 24
 - Channel Measurements & Sediment Sources ... 24
 - Water Temperature .. 26
USFWS Temperature Study...28
Suspended Sediment & Turbidity ...28
Water Column Chemistry...28
Fish Habitat and Populations..29
Data Compilation and Gap Identification ..29
Data Collection..29
Fish Passage Barriers..30
Large Woody Debris ..31
Target Values from Habitat Inventory Surveys31
Canopy Density—Eighty Percent or Greater of the Stream is Covered by Canopy ..31
Good Spawning Substrate- Fifty Percent or Greater of the Pool Tails Sampled are Fifty Percent or Less Embedded ...32
Pool Depth/Frequency- Forty Percent or More of the Stream Provides Pool Habitat ...32
Shelter/Cover- Scores of One Hundred or Better Means that the Stream Provides Sufficient Shelter/Cover ..32
MRC Watershed Analysis ..32
Analytic Tools and Interdisciplinary Synthesis33
Integrated Analysis Tables ..33
Ecological Management Decision Support System33
Development of the North Coast California EMDS Model34
The Knowledge Base Network...34
Advantages Offered by EMDS ..38
Limitations of the EMDS Model and Data Inputs38
Management Applications of Watershed Synthesis Results39
Adaptive Application for EMDS and CDFG Stream Habitat Evaluations ..39
Limiting Factors Analysis ...40
Restoration Needs/Tributary Recommendations Analysis40
Potential Salmonid Refugia...41
Spatial and Temporal Scales of Refugia ..42
Refugia and Meta-population Concept ..43
Methods to Identify Refugia...43
Approach to Identifying Refugia ...44
Salmonid Refugia Categories and Criteria:45
Other Related Refugia Component Categories:46
Big River Basin Profile and Synthesis ...49
Subbasin Scale..50
Climate..53
Hydrology..56
Mean Daily Discharge ...58
Flow Duration ..58
Annual Runoff..58
Peak Discharge..60
Flood Frequency...61
Historic Floods..61
Diversions, Dams, and Power Generation ..63
Geology..63
Bedrock..64
Coastal Belt Terrane..64
Central Belt Terrane..64
Tertiary Sandstone..64
Faulting, Seismicity, and Regional Uplift ..66
Slope Classes ... 66
Sediment Source Analysis ... 68
Landsliding ... 68
 Historic Analysis .. 68
 Current Mapping .. 70
 Landslide Potential .. 70
Fluvial Geomorphology ... 71
 Channel Entrenchment .. 71
 Bankfull Discharge .. 71
 Alluvial Sediment Storage 71
 Stream Gradient .. 74
 Mappable Channel Features 74
 Mainstem of the Big River .. 78
Vegetation ... 78
Fire History ... 81
Population ... 83
 Ownership .. 83
Land Use ... 83
 Timber Harvest .. 83
 Roads ... 90
 Railroads ... 93
 Public Lands .. 93
 Land Management ... 95
Water Quality .. 96
 Water Temperature .. 96
 Trends ... 96
 Sediment ... 97
 Water Chemistry .. 98
Riparian Conditions .. 98
Fish Habitat Relationships 99
 Historic Conditions .. 100
 Effects of Historic Splash Dams 101
 Large Woody Debris Removal and Reduction 103
 Current Conditions .. 104
 Large Woody Debris .. 106
 Fish Passage Barriers ... 106
 Changes in Habitat Conditions from 1964 to 2001 106
Fish History and Status ... 107
Fishing Interests and Constituents 115
Restoration Programs .. 115
Special Status Species .. 117
Big River Basin General Issues 118
Integrated Analyses .. 118
 Landsliding Interactions 118
 Slope Interactions .. 120
 Road Interactions ... 122
 Road Crossings .. 123
 Fluvial Erosion .. 123
 Stream Interactions ... 123
 Pool Quantity and Quality 124
 Spawning Gravel Quality 124
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Interactions</td>
<td>189</td>
</tr>
<tr>
<td>Primary Pools</td>
<td>189</td>
</tr>
<tr>
<td>Spawning Gravel Quality</td>
<td>190</td>
</tr>
<tr>
<td>Shade Canopy</td>
<td>190</td>
</tr>
<tr>
<td>Fish Passage</td>
<td>190</td>
</tr>
<tr>
<td>Fish Passage</td>
<td>191</td>
</tr>
<tr>
<td>Pool Shelter</td>
<td>191</td>
</tr>
<tr>
<td>Large Woody Debris</td>
<td>191</td>
</tr>
<tr>
<td>Stream Reach Conditions EMDS</td>
<td>192</td>
</tr>
<tr>
<td>Analysis of Tributary Recommendations</td>
<td>193</td>
</tr>
<tr>
<td>Sediment Source Restoration Sites Within the Big River State Park</td>
<td>195</td>
</tr>
<tr>
<td>Refugia Areas</td>
<td>197</td>
</tr>
<tr>
<td>Responses to Assessment Questions</td>
<td>197</td>
</tr>
<tr>
<td>Subbasin Conclusions</td>
<td>201</td>
</tr>
<tr>
<td>Middle Subbasin</td>
<td>202</td>
</tr>
<tr>
<td>Climate</td>
<td>202</td>
</tr>
<tr>
<td>Hydrology</td>
<td>202</td>
</tr>
<tr>
<td>Geology</td>
<td>204</td>
</tr>
<tr>
<td>Landsliding</td>
<td>204</td>
</tr>
<tr>
<td>RC Ownership</td>
<td>205</td>
</tr>
<tr>
<td>Fluvial Geomorphology</td>
<td>205</td>
</tr>
<tr>
<td>Vegetation</td>
<td>206</td>
</tr>
<tr>
<td>Fire and Fuels</td>
<td>207</td>
</tr>
<tr>
<td>Land Use</td>
<td>207</td>
</tr>
<tr>
<td>Forest Management</td>
<td>207</td>
</tr>
<tr>
<td>Roads</td>
<td>209</td>
</tr>
<tr>
<td>Water Quality</td>
<td>209</td>
</tr>
<tr>
<td>Temperature</td>
<td>209</td>
</tr>
<tr>
<td>Sediment</td>
<td>212</td>
</tr>
<tr>
<td>Discussion</td>
<td>214</td>
</tr>
<tr>
<td>Riparian Conditions</td>
<td>214</td>
</tr>
<tr>
<td>Fish Habitat Relationship</td>
<td>215</td>
</tr>
<tr>
<td>Past Habitat Conditions</td>
<td>215</td>
</tr>
<tr>
<td>Current Conditions</td>
<td>216</td>
</tr>
<tr>
<td>Habitat Inventory Surveys</td>
<td>216</td>
</tr>
<tr>
<td>MRC Habitat Surveys</td>
<td>221</td>
</tr>
<tr>
<td>Canopy Closure</td>
<td>221</td>
</tr>
<tr>
<td>Pools</td>
<td>222</td>
</tr>
<tr>
<td>Fish Passage Barriers</td>
<td>224</td>
</tr>
<tr>
<td>Restoration Programs</td>
<td>225</td>
</tr>
<tr>
<td>Changes in Habitat Conditions from 1960 to 2001</td>
<td>226</td>
</tr>
<tr>
<td>Fish History and Status</td>
<td>226</td>
</tr>
<tr>
<td>Middle Subbasin Issues</td>
<td>229</td>
</tr>
<tr>
<td>Middle Subbasin Integrated Analysis</td>
<td>230</td>
</tr>
<tr>
<td>Landsliding Interactions</td>
<td>230</td>
</tr>
<tr>
<td>Slope Interactions</td>
<td>231</td>
</tr>
<tr>
<td>Road Interactions</td>
<td>232</td>
</tr>
<tr>
<td>Road Crossings</td>
<td>234</td>
</tr>
<tr>
<td>Fluvial Erosion</td>
<td>235</td>
</tr>
<tr>
<td>Stream Interactions</td>
<td>235</td>
</tr>
<tr>
<td>Primary Pools</td>
<td>235</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Big River Basin Assessment Report Table of Contents</td>
<td></td>
</tr>
<tr>
<td>Inland Subbasin</td>
<td>246</td>
</tr>
<tr>
<td>Climate</td>
<td>246</td>
</tr>
<tr>
<td>Hydrology</td>
<td>246</td>
</tr>
<tr>
<td>Geology</td>
<td>250</td>
</tr>
<tr>
<td>Landsliding</td>
<td>250</td>
</tr>
<tr>
<td>MRC Ownership</td>
<td>251</td>
</tr>
<tr>
<td>Fluvial Geomorphology</td>
<td>252</td>
</tr>
<tr>
<td>Vegetation</td>
<td>254</td>
</tr>
<tr>
<td>Fire and Fuels</td>
<td>255</td>
</tr>
<tr>
<td>Land Use</td>
<td>256</td>
</tr>
<tr>
<td>Water Quality</td>
<td>258</td>
</tr>
<tr>
<td>Water Quality and Temperature</td>
<td>259</td>
</tr>
<tr>
<td>North Fork Drainage</td>
<td>259</td>
</tr>
<tr>
<td>South Fork Drainage</td>
<td>263</td>
</tr>
<tr>
<td>Headwaters Drainage</td>
<td>265</td>
</tr>
<tr>
<td>Summary</td>
<td>267</td>
</tr>
<tr>
<td>Sediment</td>
<td>268</td>
</tr>
<tr>
<td>Turbidity and Suspended Sediment</td>
<td>268</td>
</tr>
<tr>
<td>Bulk Sediment</td>
<td>270</td>
</tr>
<tr>
<td>Permeability</td>
<td>271</td>
</tr>
<tr>
<td>Water Chemistry</td>
<td>272</td>
</tr>
<tr>
<td>Discussion</td>
<td>275</td>
</tr>
<tr>
<td>Riparian Conditions</td>
<td>276</td>
</tr>
<tr>
<td>Fish Habitat Relationship</td>
<td>278</td>
</tr>
<tr>
<td>Past Habitat Conditions</td>
<td>278</td>
</tr>
<tr>
<td>Current Conditions</td>
<td>285</td>
</tr>
<tr>
<td>Habitat Inventory Surveys</td>
<td>285</td>
</tr>
<tr>
<td>Fish Passage Barriers</td>
<td>301</td>
</tr>
<tr>
<td>Restoration Programs</td>
<td>304</td>
</tr>
<tr>
<td>Changes in Habitat Conditions from 1960 to 2001</td>
<td>305</td>
</tr>
<tr>
<td>Fish History and Status</td>
<td>308</td>
</tr>
<tr>
<td>Inland Subbasin Issues</td>
<td>320</td>
</tr>
<tr>
<td>Inland Subbasin Integrated Analysis</td>
<td>321</td>
</tr>
<tr>
<td>Landsliding Interactions</td>
<td>321</td>
</tr>
<tr>
<td>Slope Interactions</td>
<td>325</td>
</tr>
<tr>
<td>Road Interactions</td>
<td>327</td>
</tr>
<tr>
<td>Road Crossings</td>
<td>330</td>
</tr>
<tr>
<td>Fluvial Erosion</td>
<td>331</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Original NCWAP basin assessment area</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Five-year running average of salmonids at Benbow Dam, South Fork Eel River, and mainstem Eel River above Cape Horn Dam</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Historical steelhead trout ladder counts at Van Arsdale Fisheries Station, mainstem Eel River, and Benbow Dam, South Fork Eel River</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Big River subbasins and CalWater 2.2.1 planning watersheds</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Hydrography hierarchy</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Selecting beneficial use protective numerical limits in water</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Tier one of the EMDS stream reach knowledge base network</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>Graphic representation of the Stream Reach Condition model</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>EMDS reference curve for stream temperature</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>Big River Basin, subbasins, and streams</td>
<td>51</td>
</tr>
<tr>
<td>11</td>
<td>CalWater 2.2.1 planning watersheds, Big River Basin subbasins</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>Annual precipitation and cumulative departure from the mean for the Fort Bragg precipitation gage, DWR Station # F80 3161 00, for the period 1886-1988</td>
<td>54</td>
</tr>
<tr>
<td>13</td>
<td>Big River Basin precipitation and nearby precipitation and stream flow gages</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>Annual precipitation and cumulative departure from the mean for the Willits 1 NE precipitation gage, DWR Station #F60 9685 00, for the period 1940—1999</td>
<td>56</td>
</tr>
<tr>
<td>15</td>
<td>Stream order in the Big River Basin</td>
<td>57</td>
</tr>
<tr>
<td>16</td>
<td>Map of 1973 USFWS study sites</td>
<td>59</td>
</tr>
<tr>
<td>17</td>
<td>Annual instantaneous peak discharge and 5-year moving average for South Fork Big River near Comptche, USGS station #11468070, for Water Years 1961 – 1971</td>
<td>61</td>
</tr>
<tr>
<td>18</td>
<td>Geology of the Big River Basin</td>
<td>65</td>
</tr>
<tr>
<td>19</td>
<td>Slope class identification map</td>
<td>67</td>
</tr>
<tr>
<td>20</td>
<td>Map of historically active and dormant landslides across the Big River Basin (CGS 2005)</td>
<td>70</td>
</tr>
<tr>
<td>21</td>
<td>Area of each subbasin assigned to landslide potential categories (CGS 2005)</td>
<td>70</td>
</tr>
<tr>
<td>22</td>
<td>Landslide potential map for the Big River Basin (CGS 2005)</td>
<td>72</td>
</tr>
<tr>
<td>23</td>
<td>Inner gorges in the Big River Basin (CGS 2005)</td>
<td>73</td>
</tr>
<tr>
<td>24</td>
<td>Stream gradients in the Big River Basin</td>
<td>75</td>
</tr>
<tr>
<td>25</td>
<td>Mapped negative channel characteristics survey year 2000</td>
<td>76</td>
</tr>
<tr>
<td>26</td>
<td>Mapped negative channel characteristics survey years 1984 and 2000</td>
<td>77</td>
</tr>
<tr>
<td>27</td>
<td>Big River Basin vegetation classes</td>
<td>80</td>
</tr>
<tr>
<td>28</td>
<td>CDF recorded fires and fire hazard in the Big River Basin</td>
<td>82</td>
</tr>
<tr>
<td>29</td>
<td>Big River Basin land ownership</td>
<td>84</td>
</tr>
<tr>
<td>30</td>
<td>Hells Gate Splash Dam on the South Fork (1912)</td>
<td>85</td>
</tr>
<tr>
<td>31</td>
<td>Tractor arch operations</td>
<td>87</td>
</tr>
<tr>
<td>32</td>
<td>Acres of timber harvest activities in the Big River Basin</td>
<td>88</td>
</tr>
<tr>
<td>33</td>
<td>Acres of timber harvest yarding methods in the Big River Basin</td>
<td>89</td>
</tr>
<tr>
<td>34</td>
<td>Disturbance level in the Big River Basin by time period and acres</td>
<td>90</td>
</tr>
<tr>
<td>35</td>
<td>Roads in the Big River Basin</td>
<td>91</td>
</tr>
<tr>
<td>36</td>
<td>Watercourse crossing at high risk of failing</td>
<td>92</td>
</tr>
<tr>
<td>37</td>
<td>Legacy watercourse crossing removal</td>
<td>92</td>
</tr>
<tr>
<td>38</td>
<td>Reclaimed landing on mainline road</td>
<td>92</td>
</tr>
<tr>
<td>39</td>
<td>Abandoned road re-contoured to natural slope</td>
<td>92</td>
</tr>
<tr>
<td>40</td>
<td>Big River Basin railroads</td>
<td>94</td>
</tr>
<tr>
<td>41</td>
<td>Splash dams on the Big River, built from 1860 to 1924, used until 1936</td>
<td>102</td>
</tr>
<tr>
<td>42</td>
<td>Coho salmon 2002 distribution based on CDFG and MRC surveys and estimated historic distribution based on a 30 meter digital elevation model in the Big River Basin</td>
<td>111</td>
</tr>
</tbody>
</table>
Figure 43. Steelhead trout 2002 distribution based on CDFG and MRC surveys and estimated historic distribution based on a 30 meter digital elevation model in the Big River Basin...............112
Figure 44. Restoration projects in the Big River Basin...116
Figure 50. EMDS Reach Condition model results for the Big River Basin by surveyed stream miles. ...128
Figure 51. EMDS Reach Condition model results for the Big River Basin by percent surveyed stream miles. ...129
Figure 52. EMDS results for 1995-1998 and 2002 for canopy and pool depth...............................130
Figure 53. EMDS results for 1995-1998 and 2002 for Pool shelter and cobble embeddedness........131
Figure 54. The percent of recommendation categories in Big River Basin surveyed streams........133
Figure 55. Stream refugia in the Big River Basin...138
Figure 56. Drainage area of streams surveyed by CDFG in the Coastal Subbasin............................145
Figure 57. Coastal Subbasin and CalWater2.2a planning watersheds..146
Figure 58. Map of salt marsh flats in the Big River Estuary in 1981 from Marcus and Reneau........147
Figure 59. Map showing the relatively shallow gradient (<0.1%) of the lower Big River, where sediment appears to have accumulated between photo years 1984 and 2000...............................150
Figure 60. Wonder plot experimental site..152
Figure 61. The ruins of Big River Mill after it burned in 1863..155
Figure 62. Acres of timber harvest activities in the Coastal Subbasin...156
Figure 63. Acres of timber harvest yarding methods in the Coastal Subbasin....................................157
Figure 64. Acres by disturbance level in the Coastal Subbasin..157
Figure 65. Water temperature monitoring sites, Coastal Subbasin..161
Figure 66. Range of MWATs, Coastal Subbasin...161
Figure 67. In-stream sediment and water quality monitoring sites, Coastal Subbasin......................164
Figure 68. CDFG surveyed streams in the Coastal Subbasin..174
Figure 69. The relative percentage of coniferous, deciduous, and open canopy covering surveyed streams in the Coastal Subbasin...175
Figure 70. Cobble embeddedness categories as measured at every pool tail crest in surveyed streams in the Coastal Subbasin..175
Figure 71. The percentage of pool habitat, flatwater habitat, riffle habitat, dewatered channel, and culverts by survey length in the Coastal Subbasin...176
Figure 72. Average pool shelter ratings from CDFG stream surveys in the Coastal Subbasin.........177
Figure 73. Dry and wetted channel and culverts reported during CDFG stream surveys in the Coastal Subbasin...178
Figure 74. Electrofishing results from 1993-2001 for the Little North Fork Big River......................179
Figure 75. Delivering landslides by category, Coastal Subbasin (GMA 2001a)................................184
Figure 76. Landslide rate vs. TMDL load allocations, Coastal Subbasin (GMA)...............................186
Figure 77. Surface erosion rate vs. TMDL load allocations, Coastal Subbasin (GMA 2001a)........188
Figure 83. EMDS Reach Condition model results for the Coastal Subbasin by surveyed stream miles. ..193
Figure 84. Recommendation categories by stream miles in the Coastal Subbasin........................194
Figure 85. Miles of roads classified by slope position and priority ranking in Big River State Park..195
Figure 86. Number of watercourse crossings evaluated by watercourse class and priority ranking in Big River State Park...196
Figure 87. Map of roads and watercourse crossings prioritized by restoration by CGS in Big River State Park (CGS 2004)..196
Figure 88. Middle Subbasin and CalWater 2.2a planning watersheds..203
Figure 89. Drainage area of streams surveyed by CDFG in the Middle Subbasin...........................204
Figure 90. Acres of timber harvest activities in the Middle Subbasin...208
Figure 91. Acres of timber harvest yarding methods in the Middle Subbasin..................................208
Figure 92. Acres by disturbance level in the Middle Subbasin..209
| Figure 99. | Cobble embeddedness categories as measured at every pool tail crest in surveyed streams in the Middle Subbasin. | 219 |
| Figure 100. | The percentage of pool habitat, flatwater habitat, riffle habitat, dewatered channel, and culverts by survey length in the Middle Subbasin. | 219 |
| Figure 101. | Average pool shelter ratings from CDFG stream surveys in the Middle Subbasin. | 220 |
| Figure 102. | Stream Canopy closure on stream segments in the MRC ownership of the Middle Subbasin (MRC 2003). | 221 |
| Figure 103. | Map of instream LWD demand in MRC ownership in the Middle Subbasin (MRC 2003). | 224 |
| Figure 104. | Dry and wetted channel and culverts reported during CDFG stream surveys and culverts reported by MRC (2004) in the Middle Subbasin. | 225 |
| Figure 105. | Electrofishing results from 1993-2000 for Two Log Creek (surveys by Georgia-Pacific). | 229 |
| Figure 106. | Delivering landslides by category, Middle Subbasin (GMA 2001a). | 230 |
| Figure 107. | Landslide rate vs. TMDL load allocations, Middle Subbasin (GMA). | 231 |
| Figure 108. | Surface erosion rate vs. TMDL load allocations, Middle Subbasin (GMA). | 233 |
| Figure 109. | Skid trail sediment delivery estimates for MRC ownership in the Middle Subbasin. | 234 |
| Figure 110. | EMDS Reach Condition model results for the Middle Subbasin by surveyed stream miles. | 239 |
| Figure 111. | MRC roads erosion hazard classes in the Middle Subbasin. | 240 |
| Figure 112. | Recommendation categories by stream miles in the Middle Subbasin. | 241 |
| Figure 113. | Inland Subbasin and CalWater 2.2a planning watersheds. | 247 |
| Figure 114. | Drainage area of streams surveyed by CDFG in the Inland Subbasin. | 250 |
| Figure 115. | Acres of timber harvest activities in the Inland Subbasin. | 257 |
| Figure 116. | Acres of timber harvest yarding methods in the Inland Subbasin. | 257 |
| Figure 117. | Acres by disturbance level in the Inland Subbasin. | 258 |
| Figure 118. | Water temperature monitoring sites, Inland Subbasin. | 261 |
| Figure 119. | Range of MWATs, Middle Subbasin. | 263 |
| Figure 120. | Range of MWATs in the North Fork drainage. | 264 |
| Figure 121. | Range of MWATs in the South Fork drainage. | 267 |
| Figure 122. | Range of MWATs in the headwaters drainage. | 270 |
| Figure 123. | In-stream sediment and water quality monitoring sites, North Fork Big River Subbasin. | 278 |
| Figure 124. | Map of LWD recruitment potential classes on MRC ownership in the Inland Subbasin (MRC 2003). | 279 |
| Figure 125. | CDFG surveyed streams in the Inland Subbasin. | 280 |
| Figure 126. | The relative percentage of coniferous, deciduous, and open canopy covering surveyed streams in the Inland Subbasin. | 288 |
| Figure 127. | Cobble embeddedness categories as measured at every pool tail crest in surveyed streams in the Inland Subbasin. | 289 |
| Figure 128. | The percentage of pool habitat, flatwater habitat, riffle habitat, dewatered channel, and culverts by survey length in the Inland Subbasin. | 290 |
| Figure 129. | Average pool shelter ratings from CDFG stream surveys in the Inland Subbasin. | 292 |
Figure 134. Stream canopy closure on stream segments in the MRC ownership of the Inland Subbasin (MRC 2003). ..295
Figure 135. Map of instream LWD demand in MRC ownership in the Inland Subbasin (MRC 2003). ..300
Figure 136. Dry and wetted channel and culverts reported during CDFG stream surveys, and culverts. ..303
Figure 137. Electrofishing results from 1993 and 1994 for East Branch North Fork Big River.318
Figure 138. Electrofishing results from 1993 and 1994 for Gates Creek ..319
Figure 139. Electrofishing results from 1993 and 1994 for mainstem Big River at Wild Horse Opening ..320
Figure 140. Delivering landslides by category, Inland Subbasin (GMA 2001a).321
Figure 141. Landslide rate vs. TMDL load allocations, Inland Subbasin (GMA 2001a).324
Figure 142. Sediment input rate from all shallow-seated landslides and road-associated shallow-seated landslides for the MRC ownership from 1970 to 2000. ..325
Figure 143. Surface erosion rate vs. TMDL load allocations. ...328
Figure 144. Skid trail sediment delivery estimates for MRC ownership in the Inland Subbasin (MRC 2003) ..329
Figure 150. EMDS Reach Condition model results for the Inland Subbasin by surveyed stream miles. ..336
Figure 151. Recommendation categories by stream miles in the Inland Subbasin. ..338
Figure 152. MRC roads erosion hazard classes in the Inland Subbasin. ..339

List of Tables

Table 1. Comparison chart of the tree size classes ...20
Table 2. Criteria used in the assessment of water quality data ..23
Table 3. Continuous water temperature data review steps ...26
Table 4. Definitions of barrier types and their potential impacts to salmonids30
Table 5. Target for number of key large woody debris pieces in watercourses of the MRC ownership in the Big River Basin ...31
Table 6. Habitat inventory target values ...31
Table 7. Fish habitat condition indices for measured parameters used by MRC33
Table 8. Reference curve metrics for EMDS stream reach condition model ...37
Table 9. List of tributary recommendations in stream tributary reports ...41
Table 10. Refugia rating worksheet ..47
Table 11. Water quality refugia rating sheet ..48
Table 12. Big River Basin and subbasin characteristics ..53
Table 13. Long-term precipitation gages near the Big River Basin ...54
Table 14. DWR 1965 estimates of flow required to maintain fishery resources in the Big River56
Table 15. Streamflow data collected by USFWS across the Big River Basin in 1973358
Table 16. Annual runoff and cumulative departure from mean Big River downstream of Laguna Creek ...60
Table 17. Mainstem Big River 3-parameter log-normal flood frequency analysis for the combined historic and synthetic 1952-2001 period of record (after GMA 2001a)61
Table 18. South Fork Big River USGS gage #11468070 peak discharges and annual maximums62
Table 19. Big River data for assessing event magnitude. Data sources sorted and ranked with top 20 values listed ..63
Table 20. Slope classes in the Big River Basin ...66
Table 21. Big River Basin number of delivering landslides by type and period68
Table 56. Existing miles of roads in different road positions by types and subbasin (from GMA).................................127
Table 64. EMDS Anadromous Reach Condition Model results for the Big River Basin.................................127
Table 63. Juvenile salmonid passage in the Big River Basin..126
Table 62. Salmonid habitat artificially obstructed for fish passage...126
Table 61. Bank erosion and small streamside mass wasting..123
Table 59. Summary of surface erosion estimates from harvest areas by study period in tons.............................123
Table 58. Computed road surface erosion by study period by subbasin..122
Table 57. Big River Basin roads by location and surface type...122
Table 55. Big River Basin ground disturbance by slope and harvest type, 1852-2001..121
Table 54. Acreage harvested by slope of ground, period, and method...120
Table 53. Volumes of delivering slides by land use by subbasin as percentage of basin total............................120
Table 52. Volumes of delivering slides by land use by subbasin in tons..120
Table 51. Occurrence of delivering debris torrents and slides by land use, 1952-2000..119
Table 50. Special status species of the Big River Basin...117
Table 49. USFWS electrofishing results from ten transects across the Big River Basin in 1973113
Table 48. Coho salmon and steelhead trout presence reported in Georgia Pacific stream surveys in 1990-2003...114
Table 47. Coho salmon and steelhead trout presence reported in MRC stream surveys from 1990-2002.........114
Table 46. Coho salmon and steelhead trout presence documented by NMFS (Jones2000)..............................114
Table 45. Coho salmon and steelhead trout presence reported in CDFG and CEMR stream surveys from 1950-1989..113
Table 44. Fishery resources of Big River...107
Table 43. Salmonid stocking in the Big River Basin..113
Table 42. Documented salmonid presence across the Big River Basin..108
Table 41. Volume of delivering slides by study period by subbasin...123
Table 39. Streams surveyed by CDFG in the Big River Basin from 1957-1966..101
Table 38. Anadromous habitat in the Big River Basin in 1965 (from CDFG 1965)...100
Table 37. Anadromous habitat in the Big River Basin in 1965 ...99
Table 36. Percentage of stream buffer area in higher canopy closure classes by subbasin...............................99
Table 35. Acres by vegetation size class in watercourse buffer zone by subbasin...99
Table 34. Acres by crown canopy density in watercourse buffer zone by subbasin...99
Table 33. Timber harvest in the Big River Basin...89
Table 32. Population and population density of the Big River Basin by subbasin...83
Table 31. Density of vegetation in the Big River Basin by subbasin...79
Table 30. Acres and percentage of vegetation in different size classes in the Big River Basin by subbasin........79
Table 29. Acreage and proportion of area of vegetation classes in subbasins...75
Table 28. List showing number and total lengths in miles of mappable channel features in major channels, Big River Basin...71
Table 27. Inner gorges in the Big River Basin..69
Table 26. Rate of delivering slides by study period by subbasin (tons/square mile/year for period).................69
Table 25. Number, total volume, and average volume of slides by period...69
Table 24. Volume of delivering slides by study period by subbasin...69
Table 23. Number and volume (in tons) of inner gorge landslides in the Big River Basin by subbasin and study period...68
Table 22. Big River Basin number of delivering slides by study period and subbasin.................................68
Table 21. Anadromous habitat in the Big River Basin in 1965..98
Table 20. Number of delivering slides by study period by subbasin...68
Table 19. Volume of delivering slides by study period by subbasin...68
Table 18. Computed road surface erosion by study period by subbasin..68
Table 17. Volume of delivering slides by land use by subbasin in tons..68
Table 16. Volumes of delivering slides by land use by subbasin as percentage of basin total............................68
Table 15. Acreage harvested by slope of ground, period, and method..68
Table 14. Big River Basin ground disturbance by slope and harvest type, 1852-2001...68
Table 13. Existing miles of roads in different road positions by types and subbasin (from GMA 2001a)...........68
Table 12. Big River Basin number of delivering slides by study period and subbasin.................................68
Table 11. Volume of delivering slides by study period by subbasin...68
Table 10. Volumes of delivering slides by land use by subbasin in tons..68
Table 9. Volumes of delivering slides by land use by subbasin as percentage of basin total............................68
Table 8. Acreage harvested by slope of ground, period, and method..68
Table 7. Big River Basin roads by location and surface type...68
Table 6. Computed road surface erosion by study period by subbasin..68
Table 5. Summary of surface erosion estimates from harvest areas by study period in tons.............................68
Table 4. Length of truck roads in near proximity to watercourse..68
Table 3. Bank erosion and small streamside mass wasting...68
Table 2. Salmonid habitat artificially obstructed for fish passage...68
Table 1. Coho salmon and steelhead trout presence reported in CDFG stream surveys from 1990-200168
Table 0. Big River Basin number of delivering slides by study period and subbasin...68
Big River Basin Assessment Report

Table 65. Occurrence of recommendations in first three ranks in surveyed streams .. 132
Table 66. How improvement recommendations were collapsed into recommendation categories in the Big River Basin ... 132
Table 67. Distribution of basin wide recommendation categories in the Big River subbasins 132
Table 68. Causal mechanisms and action prescriptions for the MRC ownership in the Big River Basin (MRC 2003) .. 134
Table 69. Subbasin salmonid refugia area ratings in the Big River Basin .. 136
Table 70. Tributaries to the Big River in the Coastal Subbasin by river mile from 7.5 minute topographic maps ... 145
Table 71. Coastal Subbasin number of delivering slides by study period and PW (GMA 2001a) 148
Table 72. Volume of delivering slides by study period by PW in the Coastal Subbasin (GMA 2001a) 148
Table 73. Landslide Potential in the Coastal Subbasin .. 148
Table 74. Channel reaches of different sinuosity and possible geologic/geomorphic controls within the Big River State Park (from CGS 2004) ... 151
Table 75. Channel types in surveyed streams of the Coastal Subbasin. ... 153
Table 76. Acreage and proportion of area of vegetation classes in the Coastal Subbasin 153
Table 77. Vegetation size class in the Coastal Subbasin by planning watershed .. 153
Table 78. Density of vegetation in the Coastal Subbasin by planning watershed .. 154
Table 79. Timber harvest in the Coastal Subbasin ... 156
Table 80. Length of truck roads by period and road surface .. 158
Table 81. General water chemistry, Big River Estuary .. 159
Table 82. Basic water chemistry, Big River Estuary. .. 159
Table 83. Water temperature summary, Coastal Subbasin .. 162
Table 84. Turbidity summary, Coastal Subbasin ... 163
Table 85. Bulk sediment data summary (volumetric), LNF Big River (HTC). ... 164
Table 86. Basic physical water parameters, Coastal Subbasin .. 165
Table 87. General water column chemistry, Coastal Subbasin ... 166
Table 88. Phosphorus summary, Coastal Subbasin ... 167
Table 89. Density of riparian vegetation in the Coastal Subbasin by planning watershed 168
Table 90. Percentage of stream buffer area in higher canopy closure classes in the Coastal Subbasin ... 169
Table 91. Acres and percentage of vegetation size classes in the watercourse buffer zone in the Coastal Subbasin ... 169
Table 92. Mendocino High School of Natural Resources estuary study plant species list for mud flat #1 (after SONAR 2002). ... 169
Table 93. Freshwater and salt marsh plant associations (from Seacat et al. 1981). .. 170
Table 94. Habitat comments from surveys conducted in the Coastal Subbasin from 1959-1979. 172
Table 95. Surveyed streams in the Coastal Subbasin .. 173
Table 96. Percent length of a survey composed of pools in the Coastal Subbasin .. 176
Table 97. Mean percent of shelter cover types in pools for surveyed tributaries in the Coastal Subbasin ... 177
Table 98. Culverts described on streams inventoried by CDFG in the Coastal Subbasin 178
Table 99. CGS evaluated watercourse crossings of Class I streams in Big River State Park (CGS 2004) ... 178
Table 100. Dry channel recorded in CDFG stream surveys in the Coastal Subbasin 179
Table 101. Restoration projects in the Coastal Subbasin ... 179
Table 102. Comparison between historic habitat conditions with current habitat inventory surveys in the Coastal Subbasin ... 180
Table 103. Summary of all electrofishing, snorkel survey, carcass survey, and bank observation surveys conducted in the Coastal Subbasin ... 181
Table 104. Volumes of delivering slides by land use by PW for 1937-2000 in the Coastal........184
Table 105. Volume of delivering slides by land use, PW, and year in the Coastal Subbasin........185
Table 106. Length of truck roads by side slope and road surface.................................186
Table 107. Coastal Subbasin roads by location and surface type.....................................186
Table 108. Existing miles of road in different road positions by types and PW in the Coastal Subbasin (from GMA 2001a).187
Table 109. Computed road surface erosion by study period by PW in the Coastal Subbasin (GMA 2001a). ...187
Table 110. Summary of surface erosion estimates from harvest areas by study period in the Coastal Subbasin (GMA 2001a). ...187
Table 111. Length of truck roads in near proximity to watercourse in miles by watercourse classification and road classification in the Coastal Subbasin ..188
Table 112. Length of truck roads in near proximity to watercourse in miles by period of construction and road classification in the Coastal Subbasin ..188
Table 113. Number of watercourse truck road crossings by watercourse and road classification in the Coastal Subbasin ...188
Table 114. Bank erosion and small streamside mass wasting in the Coastal Subbasin........189
Table 115. Juvenile salmonid passage in the Coastal Subbasin.......................................191
Table 116. EMDS Anadromous Reach Condition Model results for the Coastal Subbasin ...192
Table 117. Ranked tributary recommendations summary in the Coastal Subbasin based on CDFG stream inventories ...194
Table 118. Top three ranking recommendation categories by number of tributaries in the Coastal Subbasin ...194
Table 119. Tributary salmonid refugia area ratings in the Coastal Subbasin.......................197
Table 120. Tributaries to the Big River in the Middle Subbasin by river mile from 7.5 minute topographic maps ...204
Table 121. Middle Subbasin number of delivering slides by study period and PW (GMA 2001a) ...205
Table 122. Volume of delivering slides by study period by PW in the Middle Subbasin (GMA 2001a). ...205
Table 123. Landslide Potential in the Middle Subbasin...205
Table 124. Shallow-seated landslide summary for lands under MRC ownership in the Middle Subbasin ...205
Table 125. Percent of landslides by type and PW for lands under MRC ownership in the Middle Subbasin ...205
Table 126. Channel types in surveyed streams of the Middle Subbasin.............................206
Table 127. Channel Types in streams surveyed by the MRC on their ownership in the Middle Subbasin ...206
Table 128. Acreage and proportion of area of vegetation classes in the Middle Subbasin206
Table 129. Vegetation size class in the Middle Subbasin ...206
Table 130. Density of vegetation in the Middle Subbasin ...207
Table 131. Timber harvest in the Middle Subbasin ...207
Table 132. Length of truck roads by period and road surface ..209
Table 133. Water temperature summary, Middle Subbasin ..212
Table 134. Bulk sediment data summary (volumetric), Two Log Creek (HTC)213
Table 135. Density of riparian vegetation in the Middle Subbasin by planning watershed ...214
Table 136. Percentage of stream buffer area in higher canopy closure classes in the Middle Subbasin ...214
Table 137. Acres by vegetation size class in watercourse buffer zone in the Middle Subbasin ...214
Table 138. Habitat comments from surveys conducted in the Middle Subbasin from 1950-1966 ...216
Table 139. Surveyed streams in the Middle Subbasin ...217
Table 140. Percent length of a survey composed of pools in the Middle Subbasin. Streams are listed in descending order by drainage area. .. 220
Table 141. Mean percent of shelter cover types in pools for surveyed tributaries in the Middle Subbasin. Streams are listed in descending order by drainage area. .. 221
Table 142. Surveyed stream segments on MRC ownership in the Middle Subbasin (MRC 2003). .. 221
Table 143. Pool characteristics measured on stream segments in the MRC ownership of the Middle Subbasin (MRC 2003). .. 222
Table 144. Spawning gravel characteristics measured on stream segments in the MRC ownership of the Middle Subbasin. .. 222
Table 145. MRC LWD survey results in the Middle Subbasin (MC 2003). ... 223
Table 146. Instream LWD quality ratings for major streams and sections of streams in MRC ownership in the Middle Subbasin. ... 223
Table 147. Dry channel recorded in CDFG stream surveys in the Middle Subbasin. .. 225
Table 148. Comparison between historic habitat conditions with current habitat inventory surveys in the Middle Subbasin. .. 226
Table 149. Summary of all electrofishing, snorkel survey, and bank observation surveys conducted in the Middle Subbasin. .. 227
Table 150. Volumes of delivering slides by land use by PW for entire study period in the Middle Subbasin in tons and percentage of subbasin total (GMA 2001a). ... 230
Table 151. Volume of delivering slides by land use, PW, and year in the Middle Subbasin in tons. 230
Table 152. Length of truck roads by side slope and road surface. ... 232
Table 153. Middle Subbasin roads by location and surface type. .. 232
Table 154. Surface and point source erosion estimates by slope class for MRC ownership in the Middle Subbasin. .. 232
Table 155. Computed road surface erosion by study period by PW in the Middle Subbasin. ... 233
Table 156. Summary of total surface erosion estimates in tons from harvest areas by study period. 233
Table 157. Road associated surface and point source erosion estimates for MRC ownership in the Middle Subbasin. ... 233
Table 158. Skid trail use in acres for MRC ownership in the Middle Subbasin. .. 234
Table 159. Estimated sediment inputs by input type for the MRC ownership. .. 234
Table 160. Length of truck roads in near proximity to watercourse by watercourse classification and road classification. ... 234
Table 161. Length of truck roads in near proximity to watercourse by period of construction and road classification. .. 235
Table 162. Number of watercourse truck road crossings by watercourse and road classification in the Middle Subbasin. ... 235
Table 163. Bank erosion and small streamside mass wasting. .. 235
Table 164. Juvenile salmonid passage in the Middle Subbasin. .. 237
Table 165. EMDS Anadromous Reach Condition Model results for the Middle Subbasin. .. 238
Table 166. Ranked tributary recommendations summary in the Middle Subbasin based on CDFG Stream Inventories. .. 240
Table 167. Top Three ranking recommendation categories by number of tributaries in the Middle Subbasin. ... 241
Table 168. Tributary Salmonid Refugia Area Ratings in the Middle Subbasin. .. 242
Table 169. Tributaries to the Big River in the Inland Subbasin by river mile from 7.5 minute topographic maps. .. 248
Table 170. Inland Subbasin number of delivering slides by study period and PW. .. 251
Table 171. Volume of delivering slides by study period by PW in the Inland Subbasin. .. 251
Table 172. Landslide Potential in the Inland Subbasin. .. 251
Table 173. Shallow-seated landslide summary for lands under MRC ownership in the Inland Subbasin. .. 252
Table 174. Percent of landslides by type and PW for lands under MRC ownership in the Inland Subbasin ...252
Table 175. Channel types in surveyed streams of the Inland Subbasin ...253
Table 176. Channel types in streams surveyed by the MRC on their ownership in the Inland Subbasin ...254
Table 177. Acreage and proportion of area of vegetation classes in the Inland Subbasin ...255
Table 178. Vegetation size classes in the Inland Subbasin by planning watershed ...255
Table 179. Density of vegetation in the Inland Subbasin by planning watershed ...255
Table 180. Timber harvest in the Inland Subbasin ...256
Table 181. Length of truck roads in the Inland Subbasin by period and road surface ...258
Table 182. Water temperature summary, Inland Subbasin ...267
Table 183. Turbidity samples in the Inland Subbasin ...269
Table 184. Turbidity summary, Chamberlain Creek, North Fork Big River, and South Fork Big River (DHS and SWAMP) ...269
Table 185. Basic physical water parameters, Inland Subbasin ...272
Table 186. General water column chemistry, Inland Subbasin ...273
Table 187. Phosphorus summary, Inland Subbasin ...275
Table 188. Density of riparian vegetation in the North Fork Subbasin by planning watershed ...276
Table 189. Percentage of stream buffer area in higher canopy closure classes in the North Fork Subbasin ...277
Table 190. Acres by vegetation size class in watercourse buffer zone in the Inland Subbasin ...277
Table 191. Habitat comments from surveys conducted in the North Fork Subbasin from 1958-1979 ...280
Table 192. Surveyed streams in the Inland Subbasin ...285
Table 193. Percent length of a survey composed of pools in the Inland Subbasin ...291
Table 194. Mean percent of shelter cover types in pools for surveyed tributaries in the Inland Subbasin ...293
Table 195. Surveyed stream segments on MRC ownership in the Inland Subbasin (MRC 2003) ...294
Table 196. Pool characteristics measured on stream segments in the MRC ownership of the Inland Subbasin (MRC 2003) ...296
Table 197. Spawning gravel characteristics measured on stream segments in the MRC ownership of the Inland Subbasin (MRC 2003) ...298
Table 198. MRC LWD survey results in the Inland Subbasin (MC 2003) ...299
Table 199. Instream LWD quality ratings for major streams and sections of streams in MRC ownership in the Inland Subbasin ...300
Table 200. Culverts surveyed for barrier status in the Inland Subbasin (Taylor 2001) ...301
Table 201. Culverts described on streams inventoried by CDFG and in the MRC Watershed Analysis (2003) in the Inland Subbasin ...302
Table 202. Dry channel recorded in CDFG stream surveys in the Inland Subbasin ...302
Table 203. Restoration projects in the Inland Subbasin ...304
Table 204. Comparison between historic habitat conditions with current habitat inventory surveys in the North Fork Subbasin ...306
Table 205. Summary of all electrofishing, snorkel survey, and bank observation surveys conducted in the Inland Subbasin ...309
Table 206. Volumes of delivering slides by land use by PW for entire study period ...322
Table 207. Volume of delivering slides by land use, PW, and year (in tons) ...323
Table 208. Percent of road-associated landslides by PW for lands under MRC ownership ...324
Table 209. Length of truck roads by side slope and road surface in the Inland Subbasin ...325
Table 210. Inland Subbasin roads by location and surface type ...326
Table 211. Existing miles of road in different road positions by types and PW ...326
Table 212. Contributing road area, proportion estimates, and surface and point source erosion estimates by slope class and PWs for MRC ownership in the Inland Subbasin.327
Table 213. Computed road surface erosion by study period by PW..327
Table 214. Summary of surface erosion estimates from harvest areas by study period in the Inland Subbasin. ...328
Table 215. Road associated surface and point source erosion estimates by PW for MRC ownership. ...329
Table 216. Skid trail use in acres for MRC ownership in the Inland Subbasin (MRC 2003)................329
Table 217. Estimated sediment inputs by input type for the MRC ownership averaged over 30 years, 1970-2000 ...330
Table 218. Length of truck roads in near proximity to watercourse in miles by watercourse classification and road classification...330
Table 219. Length of truck roads in near proximity to watercourse in miles by period of construction and road classification...330
Table 220. Number of watercourse truck road crossings by watercourse and road classification........330
Table 221. Bank erosion and small streamside mass wasting in the Inland Subbasin...............................331
Table 222. Salmonid habitat artificially obstructed for fish passage (N=3 Culverts).................................333
Table 224. EMDS Anadromous Reach Condition Model results for the Inland Subbasin......................335
Table 225. Ranked tributary recommendations summary in the Inland Subbasin based on CDFG stream inventories. ...337
Table 226. Top three ranking recommendation categories by number of tributaries in the Inland Subbasin. ...338
Table 227. Select high treatment immediacy road sites within MRC ownership..339
Table 228. Tributary Salmonid Refugia Area Ratings in the North Fork Subbasin.340